Forefront of
the Two Sample Problem

From classical to state-of-the-art methods
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What is the Two Sample Problem?

Xy, X, ~Pi.i.d
Yy, ..,Y, ~Qii.d

*Two Sample Problem

P=0Q?
*Example:
* |s there a difference in blood glucose level between two
groups?

* |s there a difference in test score between two schools?
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Parametric Approach

* Assume the type of distribution and compare
their empirical moments.

* Two sample t tests. (1°t order moment)
* F tests. (2" order moment)

*|f the parametric assumptions are not

satisfied, they cannot work well.
* Ex:
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Ex: Welch’s t-test and F test

In [1]:

X <- rnorm(500,mean=0,sd=sqrt(1/3))
y <- runif(500,-1,1)
t.test(x,y)

Welch Two Sample t-test

data: x and y

t = 0.14157, df = 997.72, g-val

ue = 0,

alternative hypothesis: true di
fference in means is not equal
to 0

95 percent confidence interval:
-0.06953235 0.08034515

sample estimates:

mean of x mean of y

0.001976782 -0.003429617

In [2]:

var.test(x, y)

F test to compare two v
ariances

data: x and y
F =1.034, num df = 499, denom
df = 499, p-value =0

alternative hypothesis: true ra
tio of variances is not equal t
ol
95 percent confidence interval:
0.8674189 1.2326030

sample estimates:
ratio of variances

1.034013

Apparently, they cannot take into account 39 or higher order
moments.
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Nonparametric Approach
(Kolmogorov Smirnov test)

*One dimensional variables
* Empirical Distribution

N
1
Fy(t) = ;I(Xi <t)
*KS test statistics '

Dy = sup | Fi(t) — F2(2)|
teR
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Nonparametric Approach
(Mann—Whitney U test)

*Define kernel

h(z,y) =1{X <Y}
And corresponding | :’
U-statisticis

1 AAAAAA
Upn = — > 11X; <Y . -
4 n ZZ: X < %5 * Mann-Whitney U statistic
"/ is average number of

Test statistic: (nU; X < Y for possible
combinations.



Asymptotic properties

v'For more general kernel, see Van der Vaart(2000).

*Consider kernel h(x;,y,) , and U-statistics

1
Uﬁ,n — E_’I’L Z h(Xza Yy)

t,J
e Assume, % — 7, % —~1-~.Then,

VNU —6) SN(0,¢10/7 + Coa/(1— 7))

where, § = E[h(X1,Y1)],
Cl,O — COV[h(Xl, Yl), h(Xl, Yll)], CO,I - COV[h(Xl,Yl), h(X{,Yl)]
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Extension to kernel methods

*|dea: RKHS embedding of distributions.

p(z)
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Relationship with usual Kernel Method

Feature map Reproducing property
v . f(:B) — <f7 k('ax»?'lk
(e
0}
Measure map Reproducing property
o) BS(X) = (f. [ (,a)dP(a))r,
P )

We write
me :=/k(-,x)dIP’(:c)
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Why Kernel?

e Characteristic kernels hold all the information

of the moment.

* This can be checked easily. Consider the taylor expansion
of characteristic kernels, e.g. gaussian kernel, and take
expectations by any distribution.

*They can be defined for any data. L% 1"
e Of course, they can be used il e ol o i
for multi-dimensional data. ‘
Furthermore, for structured data - L\\”/
such as strings. v




Applications of Kernel Method

* Feature map perspective

* SVM, Kernel PCA,
Kernel CCA, Kernel FDA,
Kernel Ridge Regression, SVR, etc...

* Measure map perspective
* Kernel Two Sample Test, HSIC,
Kernel Dimensionality Reduction

* Kernel Bayes Rule,
Kernel Monte Carlo Filter,
Kernel Spectral Algorithm for HMM,
Support Measure Machines, etc...
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Measure distance of distributions in RKHS

* MMD: maximum mean discrepancy

* To conduct test, we define the distance of
distributionsas MMD;

M?*(P,Q) = [lmp — mg|l7,
If P = (), MMD becomes 0.

m
® Q@

mp
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Empirical Estimator of MMD

*By replacing kernel mean with its empirical

estimator,

My = [[ip —ing| I3

14 n
:lQ Z (Xa, Xp) + nlz > k(YY) ——ZZk (Xa,Ye).

c,d=1
*We use its UanaSEd version°

Uen

3 a

a#b
14

2 ZZk (Xa,Y2).

alcl
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Relationship with U statistics

* Usnis an 2 sample U-statistics using kernel

h(xla L2, , ylay2) — k(xh ZCQ) + k(y17y2)
1
_5{/{(%,%) + k(x1,y2) + k(z2,y1) + k(22,92)}

*\We can get its asymptotic null distribution
applying theory of U-statistics!!
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Difficulty

*Reminded the claim of theorem of
asymptotic normality of U-statistics, it
calculate a quantity, (1 o, (o.1-

*This case, it becomes 0.

*This implies that we have to multiply

guantities bigger than,/n in order not to
asymptotic distribution degenerate.

VNUpm —0) =
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Key Theorem

Let total sample sizeis N, and N =1| + n.

Assume /
n

— — — =1
N s N Y

Then, Under the null hypothesis P = @,

d 1
NU;,, — Py (ZE — )
’ ; (1 =)

where Z; 1'rl\ldN (O, L ) :
(1 =)

> (Proof) See f&7K(2010).
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Who are {\i}i2:s?

* A non-zero eigenvalues of integral operator
over .2(P) that has kernel

~

X XlldP
i.e. non-negative real value that satisfies

/ fi(2,9)dP(y) = Aidi(z).
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Proposed method to get a critical value

 We have to find{X;}:2,. This can be estimated
consistently by eigenvalues of the gram matrix
defined by,
N N

1 1
Kij = k(X5 Xj) — - > k(X Xp) - ~ > k(Xa, X))
b=1 a=1

N
1
—|—m Z k(Xa, Xp)
a,b=1
= (QNKQnN)ij-
1

where. QN:IN—N].N]_%

(called centered gram matrix.)
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o

Power analysis

*Synthetic Data
X ~ N(0,1/3), Y ~U(~1,1)

12/9/16

value

variable

X

Y

What times is null hypothesis rejected

on 100 trials.

EachSampleSize | KolmogorovSmirnov | Mann_Whitney | Kernel
100 92 5 100
500 100 7 100

Kernel Two Sample Test sperilorto
Other testsin terms of power.
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count

Power analysis

*Synthetic Data
X ~U(-1,1), Y ~U(-1.15,1.15)

What times is null hypothesis rejected

on 100 trials.
EachSampleSize | KoimogorovSmirnov | Mann_Whitney | Kernel
variable 100 7 2 23
X
y 500 45 6 77
1000 97 10 100

Kernel Two Sample Test sperilorto
Other testsin terms of power.

1.0 0.5 0.0 0.5 1.0
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Significance analysis

*Synthetic data
X ~ N(0,1/3), Y ~ N(0,1/3)

Type 1 error rate on 5000 trials.

EachSampleSize | KolmogorovSmirnov | Mann_Whitney | Kernel

variable | 100 0.038 0.048 0.067
) 500 0.050 0.061 0.048
1000 0.050 0.045 0.057

All tests output the expected values.

value
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Multidimensional case:
iris data(setosa and virginica)

e Labeled 5-dim data *Setosa and Setosa

(m=5()’ |=50, N=100) * Null hypothesisshould not

e |s there a difference be rejected.
between these features?
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Histogram: estimated null distribution. Red line: critical value. Dash Line: test statistic.
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High dimensional case:
MNIST data(hand-written digit data)

*Labeled(1~9) data with 784 features.

» Each feature represents 0 or 1 of the pixel.

* Isit possible to classify
these numbers based on
the distribution?

* Can Kernel two sample
test overcome the curse of

dimensionality?
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count

Digit “1” vs Digit “2”

e Compare group of “1” * Divide “1” into two
and “2”. groups.
* Each groupis about4000
sample. o
Seo i .2 : kimubu?lpu ‘
Histogram: estimated null distribution.

N 5 Red line:critical value.

0 500 ui?&umgjw 2000 2500 Dash Line: test statistic.
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