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Abstract. Rubin causal model is a statistical model to estimate the effect of
a treatment on the outcome based on the framework of potential outcomes.
To estimate a causal effect based on Rubin causal model, propensity score
plays a central role. In particular, matching and weighting methods like In-
verse Probability Weighted Estimator (IPWE) and Doubly-Robust estimator
based on the estimated propensity score are widely used. Despite its popu-
larity, it was pointed out that model misspecification of the propensity score
can result in substantial bias of the resulting estimators of a causal effect and
potential outcomes. It is possible to estimate propensity score in nonpara-
metric ways or machine learning methods to avoid model misspecification.
However, it doesn’t work well in most situations due to following reasons: 1)
Curse of dimensionality. 2) They only aim at an accuracy of classification and
don’t optimize the covariate balancing. To overcome the problems above, we
propose a new estimator of propensity score using kernel mean embeddings
of conditional distributions. Although our proposal is completely nonpara-
metric, our estimator has a dimensionality-independent rate of convergence.
Using kernel measures of conditional independence for model selection, our
estimator can also correct the bias that arises from the imbalance of covari-
ates. In numerical simulations, we confirm that our method can reduce the
bias in misspecified settings. We also describe several asymptotic properties
of our estimator.
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